

Hlavács A., Mertinger V., Benke M., Anyagok Világa (Materials Word) 1 (2021) 18-23

Alakítható alumínium ötvözetek melegen hengerelt állapotú lemezeinek komplex elemzése kristálytani textúra alapján

Hlavács Adrienn^{1*}, Mertinger Valéria¹ és Benke Márton¹

¹Fémtani Képlékenyalakítási és Nanotechnológiai Intézet, Miskolci Egyetem, Miskolc, Magyarország

*Levelező szerző: femhadri@uni-miskolc.hu

Absztrakt

A kristálytani textúra meghatározó szerepet játszik az alakított (hideg- vagy melegalakított) félkész termékek tulajdonságainál. A meleghengerlést követő anizotrópia nagymértékben befolyásolja a további hengerlés, illetve a végtermék tulajdonságait. A kialakult kristálytani textúra vizsgálatának egyik módszere a csészehúzó vizsgálat, amely során a csésze fülesedése jellemzi a lemez anizotrópiáját. Azonban ezen vizsgálati módszer alkalmazhatósága függ a lemezvastagságtól. A melegen hengerelt lemez esetében ezen vizsgálatok nem végezhetőek el. A Miskolci Egyetem Fémtani, Képlékenyalakítási és Nanotechnológiai Intézetben kifejlesztett fülesedés becslő módszer során a röntgendiffrakciós pólusábra vizsgálatok eredményeiből becsülni tudjuk a lemez fülesedését. A kutatás során 3xxx, 5xxx és 8xxx típusú melegen hengerelt lemez vizsgálatát végeztük el a lemez hossza és szélessége mentén. Az eredményekből megállapítható, hogy a melegen hengerelt állapotban különbség van az ötvözetek között és gyenge fülesedés beli inhomogenitás jellemzi a hengerelt lemezeket.

Kulcsszavak: textúra, alumínium, fülesedés,

1. Bevezetés

Az alumínium napjainkban az egyik legelterjedtebben alkalmazott alapanyag, mellyel számtalan alkalmazásban találkozhatunk akár a hétköznapi életben is. Elterjedésének kulcsa a kis tömege és jó korrózióállósága. Az alumínium alapanyagból készült félkésztermékek ötvözőtartalma széles körben felhasználás változtatható további а előállított követelmények szempontjából (mechanikai, technológiai és fizikai tulajdonságok) alapján. Ezen követelményeket

az ötvözet összetételével, illetve az előállítás paramétereivel tudjuk teljesíteni [1-5]. Az alakítható alumínium ötvözetek esetében a végső mechanikai tulajdonságokat alapvetően a szilárd oldatban lévő ötvözők (Mn, Cr, Fe, Ni stb.), illetve az alakítás mértéke határozzák meg [3].

Lemezszerű félkésztermékek esetében a mechanikai tulajdonságokon túl kiemelt szerepet kap az alakíthatóság irányfüggése (vagy más szóval anizotrópiája), melyet alapvetően a kristálytani textúra határoz meg [3]. A fülesedés

kimutatásának legelterjedtebb módszere a csészehúzóvizsgálat. A vizsgálat során készített megfigyelhető magasabb részeit csészén hegyeknek, a mélyebbeket völgyeknek, a kettő magasságbeli különbséget közötti pedig "füleknek" nevezi a szakirodalom. Alumínium ötvözetek esetében ezek a fülek négyes hidegen szimmetriát mutatnak, hengerelt állapotban a fülek HI-hoz képest (φ) 45°+(n*90°) helyeken, míg újrakristályosodott állapotban a HI-hoz képest a 0°+(n*90°) irányokban jelentkeznek (1.ábra) [3, 6-8].

1.ábra Mélyhúzott alumínim csészék [6]

Melegen hengerelt lemezek esetében a csészehúzóvizsgálat, a lemez vastagsága miatt nem végezhető el. Ezért a lemez fülesedésének becslését a szerzők által kidolgozott pólusábra alapú módszer alapján végezhető el [9-11].

2. Elvégzett vizsgálatok 2.1. Vizsgálti alapanyag

A kutatás során melegen hengerelt állapotú

alakítható alumínium ötvözetek vizsgálatát végeztük el. A meleghengerlési folyamat helyét a technológiai folyamatban az 2. ábra mutatja.

2. ábra Technológiai folyamat

A vizsgált alapanyagok 3003-as, 5050-es és 8080-as típusú almínium ötvözetek családjába tartoznak. Az ötvözetek főbb ötvözőinek tartalmát a 1. Táblázat tartalmazza.

1. Táblázat A vizsgált ötvözetek

	Mn [^m / _m %]	Si [^m / _m %]	Fe [^m / _m %]	Mg [^m / _m %]
3003	1	0,25	0,6	-
5050	0,35	-	0,14	3,28
8080	0,36	0,16	1,1	-

A vizsgáltokhoz kör alakú mintákat munkáltunk ki a melegen hengerelt lemez elejéből, közepéből és végéből, illetve a széléről és a közepéről (3. ábra).

3. ábra A vizsgált minták helye a melegen hengerelt lemezben

2.2. Vizsgálati módszer

A röntgendiffrakciós textúra vizsgálatokat a Miskolci Egyetem, Fémtani, Képlékenyalakítási és Nanotechnológiai Intézet Röntgendiffrakciós laboratóriumában található Euler bölcsővel felszerelt Bruker D8 Advance diffraktométerrel végeztük (4. ábra).

4. ábra Euler bölcsővel felszerelt Bruker D8 Advance diffraktométer

A vizsgálatokat az alábbi paraméterek alkalmazásával végeztük el: CoKα sugárzás, 40 kV csőfeszültség, 40 mA áram, gyűjtési idő 10 s, lépésköz (Δ2Θ) 0,05°. A mérés során a legnagyobb relatív intenzitású, {111}, {200} és {220} pólusábrákat vettem fel. A pólusábrák alapján kiszámítottuk az orientációs eloszlás függvényt (ODF). Az ODF szintetizálása során először a mért pólusábrákat újraszámítottuk, hogy megkapjuk a "holtteret" adatait is, vagyis a x=0-90° tartományhoz teljes, tartozó pólusábrákat. Az újraszámításhoz a hengerlést jellemző ortorombos alakváltozást használtuk, ami a HI és KI tengelyeire egyaránt szimmetrikus pólusábrát eredményez. Az ODF térben kiszámítottuk jellemző textúraа komponensekhez tartozó Euler szögek értékeinél а térfogathányadokat Δ=15° szögeltérés mellett. Így megkapjuk, hogy a vizsgált térfogatban a nevezetes orientációkban az elemi cellák hány %-a (V/V %) áll.

2.Táblázat Alumínium ötvözetek fő textúrakomponensei [12-14]

Textúra-	Euler szögek				
komponens	φ1	Φ	ф2		
С	90°	30°	45°	Alakítási	
S	59°	34°	65°	textúra-	
В	35°	45°	0°/90°	komponens	
G	0°	45°	0°/90°	Újra-	
				kristályosodási	
Kocka	0°	0°	0°/90°	textúra-	
				komponens	

2.3. Becsült átlagos fülesedés számítása

A vizsgált alumínium lemezek fülesedésének becslését а Miskolci Egyetem Fémtani. Képlékenyalakítási és Nanotechnológiai Intézete által kidolgozott, pólusábra alapú módszert alkalmaztam. A módszer szerint a {200} pólusábra telies intenzitás eloszlás függvényének a hengerlési síkra eső merőleges vetülete jó közelítéssel azonos a csészeprofillal. A vizsgálat első lépése pólusábrák mérése (5. ábra, a), újraszámítása (5. ábra, b), majd a {200} reflexió esetében a χ (a diffraktáló nyaláb normálisa és a normál irány közötti szög)metszetek illesztése n darab Gauss-görbével. Ezután meghatározzuk а Gauss-görbék területeit (T_i^{φ}), majd szorozzuk a Gauss-görbék maximumához tartozó χ értékkel (χ^{φ}_{MAXi} , 5. ábra, c). Az ily módon súlyozott intenzitás adatokat összegezzük az adott φ értékhez az (1) egyenlet alapján, végül az összegzett

intenzitásokat ábrázoljuk φ (HI-val bezárt ször a hengerlési síkon) függvényében, ami a csészeprofil relatív változását adja (5. ábra, d) [9-11,15-16].

5. ábra A pólusábra alapú fülesedést becslő módszer lépései, a) mért {200} pólusábra b) újraszámított {200} pólusábra jelölve egy tetszőleges χ-metszettel c) χmetszet illesztése Gauss görbékkel d) {200} teljes intenzitás eloszlás függvény merőleges vetülete a hengerlési síkra [9-11]

А fülesedés mértékének számszerű jellemzéséhez használatos az átlagos fülesedés (Z), amely az átlagos fülmagasság és átlagos csészemagasság hányadosát adja meg, %-ban kifejezve a (1) – (5) képletek alapján, ahol h_{ni} a csésze magassága a füleknél, $\overline{h_p}$ az n darab fülnél mért csészemagasságok átlaga, h_{vi} a csésze magassága a völgyeknél, $\overline{h_{\nu}}$ az n darab völgynél mért csészemagasságok átlaga, he az átlagos fülmagasság, h átlagos az csészemagasság (6. ábra).

6. ábra Az átlagos fülesedés számításához használt paraméterek. [16]

$$\overline{h_p} = (h_{p1} + h_{p2} + \dots + h_{pn})/n \tag{1}$$

$$\overline{h_{\nu}} = (h_{\nu 1} + h_{\nu 2} + \dots + h_{\nu n})/n$$
(2)

$$h_e = \overline{h_p} - \overline{h_v} \tag{3}$$

$$\overline{h} = (\overline{h_p} + \overline{h_v})/2 \tag{4}$$

$$Z = (h_e/\bar{h}) \cdot 100 \tag{5}$$

intenzitásból és a csészemagasságból Az számított átlagos fülesedés értékek összehasonlíthatósága végett szükséges alkalmazni egy skálázási faktort [15], melynek szerepe az, hogy a becsült átlagos fülesedés értékeket az adott geometriájú csészék magasságából számított átlagos fülesedéshez lehessen hasonlítani. Melegen hengerelt lemez esetében a skálázási faktor értéke 24 [17].

3. Eredmények

A melegen hengerelt 3003-as, 5050-es és 8080-as ötvözetek textúra-komponens eredményeit a szalag hossza, illetve szélessége mentén mutatja a 7. ábra. A 3003-as ötvözet esetében az alakításra jellemző textúraértékei 4-7 [∨]/_∨%, komponens az újrakristályosodásiak, pedig 2-4 ^V/_V% körül vannak, jelentős különbség nem mutatható ki a szalag hossz-, illetve keresztiránya mentén. Az 5050-es ötvözet esetében mind az alakítási, mind az újrakristályosodási textúra-komponens setében közel azonos közel textúra mentes, 2-3 ^V/_V% körüli értékeket kapunk és szintén nem mutatható ki különbség szalag hossz-, illetve keresztiránya mentén. A 8080-as ötvözet esetében gyenge újrakristályosodási (4-6 $^{V}/_{V}$ %) textúra mutatható ki, jelentős eltérés nem mutatható а szalag hossz-, illetve ki keresztmetszete mentén.

7. ábra A melegen hengerelt 3003-es, 5050-es és 8080-as ötvözetek textúra-komponens értékei a szalag hossza, illetve szélessége mentén (teli jelölők- alakítási textúra-komponensek; csíkozott jelölők- újrakirstályosodási textúra-komponensek)

ANYAGOK VILÁGA ISSN 1586-0140 WORLD

XVI. ÉVFOLYAM 1. szám XVI. VOLUME Nr. 1 2021 Május 2021 May

Hlavács A., Mertinger V., Benke M., Anyagok Világa (Materials Word) 1 (2021) 18-23

A 8. ábra mutatja a melegen hengerelt 3003as, 5050-es és 8080-as ötvözetek {200} pólusábrái alapján becsült csészeprofiljait a szalag hossza, illetve szélessége mentén. A 3003-as ötvözet esetében megfigyelhető, az alakításra jellemző fülesedés jellege (45°+90°). Az 5050-es és 8080-as ötvözetek gyenge mértékű fülesedés jellemzi, amely sem hengerlési, sem újrakristályosodási. Mindhárom ötvözet esetében látható, hogy jelentős különbség nem mutatható ki a szalag hossz-, illetve keresztiránya mentén.

8. ábra A melegen hengerelt 3003-as, 5050-es és 8080-as ötvözetek {200} pólusábrái alapján becsült csészeprofilok a szalag hossza, illetve szélessége mentén

A {200} pólusábrák alapján becsült csészeprofilokból számított átlagos fülesedés értékeket eredményeit mutatja a 3. Táblázat. A 3003-as ötvözetre gyenge hideghengerlési fülesedés, a 5050-as és 8080-as ötvözetre gyenge, szinte elhanyagolható értékű fülesedés jellemző. A szalag hossz-, és keresztmetszete mentén nem mutatható ki jelentős különbség egyik ötvözet esetében sem.

3.Táblázat A melegen hengerelt 3003-as, 5050-as és 8080-as ötvözetek becsült átlagos fülesedés értékei a szalag hossza, illetve szélessége mentén 24-es skálázási faktor alkalmazásával

SF:24	3003	5050	8080	
Szalag eleje	Közép	1,87	0,49	1,14
	Szél	2,60	1,35	1,4
Szalag közepe	Közép	2,01	0,71	1,24
	Szél	2,09	1,23	0,77
Szalag vége	Közép	2,57	0,26	0,69
	Szél	1,33	0,86	0,48

2. Összefoglalás

A melegen hengerelt állapotú lemez vizsgálatainak eredményeiből megállapítható, hogy a meleghengerlést követően 3003 típusú alumínium ötvözet esetében alakításra jellemző négyes szimmetriájú fülesedés, míg a 5050-as és 8080-as ötvözetre sem újrakristályosodási sem alakítási fülesedés, szinte textúra mentes állapot alakul ki. A lemez hossz- és keresztiránya mentén jelentős fülesedésbeli különbség nem alakult ki.

Köszönetnyílvánítás

"A cikkben ismertetett kutató munka az EFOP-3.6.1-16-2016-00011 jelű "Fiatalodó és Megújuló Egyetem – Innovatív Tudásváros – a Miskolci Egyetem intelligens szakosodást szolgáló intézményi fejlesztése" projekt részeként – a Széchenyi 2020 keretében – az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg."

Irodalmi hivatkozás

[1] R. E. Sanders Jr., S. F. Baumannh, H. C. Stumpf, Wrought Non–Heat-Treatable Aluminum Alloys, Treatise on Materials Science and Technology Vol. 31, 1989, 65-105

[2] E. Köves, Alumínium kézikönyv, 1984

[3] I. J. Polmear, Light Alloys (Fifth Edition), Metallurgy of the Light Metals, 2017

[4] E. A. Starke Jr., Alloys: Aluminum, Encyclopedia of Condensed Matter Physics, 2005, 18-24

[5] C. Vargel, Corrosion of Aluminium Second Edition, 2020

[6] T. Sheppard, M.A. Zaidi, Influence of hotworking parameters on earing behaviour of Al– 2Mg sheet, Metals Technology Vol. 9, 1982, 368-374

[7] P-W. Kao, Texture and earing behaviour of cold-rolled aluminium alloy 3004. Materials Science and Engineering Vol. 74 Issue 2, 1985, 147-157

[8] O. Engler, Control of texture and earing in aluminium alloy AA 3105 sheet for packaging applications, Materials Science and Engineering A 538, 2012, 69-80

[9] M. Benke, A. Hlavacs, I. Piller, V. Mertinger, Lemezek fülesedése és a {h00} pólusábrák közötti kapcsolat. Bányászati és Kohászati Lapok 152, 2018, 36-39

[10] M. Benke, A. Hlavacs, P. Imre, V. Mertinger, Prediction of earing of aluminium sheets from {h00} pole figures, European Journal of Mechanics - A/Solids Vol. 81, 2020, 103950

[11] Benke M. A kristálytani anizotrópia (textúra) újszerű megközelítése, Habilitációs értekezés, 2020

[12] U.F. Kocks, C.N. Tomé, H-R. Wenk, Texture and Anisotropy, First edition Cambridge University Press, Cambridge, 1998

Physics, 2005, 18-24

[13] O. Engler, V. Randle, Introduction to Texture Analysis, Second edition, CRC Press, Boca Raton, 2010

[14] S. Suwas, R. K. Ray, Crystallographic Texture of Materials, Springer-Verlag, London, 2014

[15] M. Benke, B. Schweitzer, A. Hlavacs, V. Mertinger, Prediction of earing of cross-rolled Al sheets from {h00} pole figures, Metals-Basel 10(2), 2020, 192

[16] M. Benke, Prediction of earing of aluminium sheets from {111} pole figures, Crysallography. Reports, 2020, 980-984

[17] A. Hlavacs, M. Szucs, V. Mertinger, M. Benke, Prediction of Earing of Hot-Rolled Al Sheets from Pole Figures Metals 11, 2021, 99.