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Abstract - The application of cellular materials, especially metal foams within light-
weight structures for energy absorption arouses high interest. In this paper a model is 
suggested to describe the energy absorption capacity of metal foams, which takes into 
account the cell-size distribution. In the case of uniform cell-size distribution an 
analytical expression was found. To check the validity of the model Alporas foams were 
investigated with compression tests.  
 
 
1. INTRODUCTION 
 

In the past years several applications have been found for different cellular 
materials: polymer and glass foams are applied for thermal insulation exploiting their low 
thermal conductivity, or for packaging, since they show good energy absorption 
properties, ceramic foams can be used as filters, etc [1]. Recently, a new class of cellular 
materials, metal foams emerged. These materials exhibit novel mechanical, thermal, 
electrical and acoustic properties: these are light and stiff, have potential for heat and 
sound insulation like polymer foams, moreover they are good flame arresters [2-5]. The 
increasing number of publications and the growing applications show that metal foams 
have come to the fore, although, so far only a few applications have been found in 
everyday-life. 

One of the main applications of metal foam is in the automotive and space 
industry. Metal foams can be used as bumpers e.g. for suburban railcars, trams or cars 
[4]. The reason for this is that they are excellent energy absorbers due to their special 
deformation mechanism, the formation of deformation bands. Therefore metal foams (as 
well as other cellular materials) exhibit a characteristic compressive stress-strain curve 
which can be divided to three stages. At small strains (<1-2%) foams deform elastically; 
there is then a plateau of deformation (up to 60-80% strain), where the stress is almost 
constant. Finally, as the deformation reaches the densification strain, foams densify: the 
cell-walls crush together. Due to this long plateau foams are suitable for absorbing energy 
without exceeding a given stress limit. 

To characterize the energy absorption features of aluminum foams the 
compressive properties, like the plateau stress and the densification strain must be 
determined as a function of the properties of the foam.  
 
2. EXPERIMENTAL 
 
 Alporas foams of different relative densities were investigated here. This foam is 
manufactured by a batch casting process. First calcium is stirred into the molten 
aluminum to increase the viscosity. Then titanium hydride is dispersed in the melt in 
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order to form bubbles. These bubbles are stabilized by the added calcium. After the melt 
expanded and filled up the mold, the foam is cooled with a powerful blower until it 
solidifies. 
 Compression tests were performed on Alporas foams with three different relative 
densities (Table 1). An MTS hydraulic machine was used for quasi-static compression 
tests at strain rate of 10-3 s-1. The dimensions of the samples were 30×30×25 mm3. 
 

Name Ap0.8 Ap1.1 Ap2.08 
Relative density 6% 9% 17% 

Table 1 
 
3. RESULTS 
 
3.1. Plateau stress 
 

Gibson and Ashby modeled foams with a structure consisting of cubes of solid 
struts and plates in which the struts meet at their midpoints [1] (Fig. 1). According to this 
model the plateau stress depends only on the size of the cells (l) and the thickness of the 
cell-edge (te) and cell-wall (tw): 

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=

l
tB

l
tB we

sy

pl
2

3

1
,

*

σ
σ

       (1) 

where σpl
* is the plateau stress of the foam and σy,s is the yield stress of the solid it is 

made of, and B1 and B2 are constants. 

 
Fig.1 The open- and closed-cell structure according to the Gibson-Ashby model [1] 
 

This gives a good estimation; however, it is inadequate for precise design. The 
model supposes identical cube cells, thus neither the distribution of the cell-size, cell-
edge and cell-wall thickness nor the different imperfections (broken cell-walls, cell-edge 
and wall curvature etc.) are taken into account. Compression tests show that the constant 
plateau stress can be taken only as a first approximation; actually the plateau stress 
increases slowly with increasing deformation. The reason for this increment in the 
plateau stress can be the cell-size and the cell-wall/cell-edge thickness distribution. 
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 Let us consider an open-cell foam as a cubic array of struts of different length, 
each strut having square cross section of size t. For the sake of simplicity let the cell-size 
distribution of the foam be uniform (i.e. all cell-size the same number of cells can be 
found in the foam from all cell sizes). Let us suppose further that the plateau stress is 
governed by the stress caused by the cell collapse at that moment, and first the largest and 
finally the smallest cell will collapse. Then the following connection can be given 
between the strain (ε) and the size of cell which is about to collapse (l): 
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where l1 and l2 are the size of the smallest and the largest cell, respectively [6]. The 
second term in the numerator is the volume of the totally compressed part of the foam at 
ε deformation, while the first term in the numerator is the original volume of that part of 
the foam in which the cells are already collapsed at ε deformation. (The changes in the 
cross section during compression are neglected.) From Eq. 2 l can be expressed as the 
function of ε: 
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The average relative density of the undeformed foam can be calculated as 
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This gives for the average cell-edge thickness: 
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Substituting Eq. 3 and 5 into Eq. 1 using 02 =B  (open-cell foam) the following 
expression is obtained for the plateau stress at ε deformation: 
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where 12 llk = . In this simple case the plateau stress is an increasing function of the 
strain and depends also on characteristic parameters of the foam, ρrel, k and syB ,1σ , this 
latter being a fitting parameter in the present description. 

Since the energy absorption capacity per unit volume can be calculated as 

∫ ′′=
ε
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)()( dWvol , Eq. 6 allows for the evaluation of the absorbed energy as a function 

of strain: 
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where 
relk ρ)1( 2+=Φ  and relrelk ρρ +−=Ψ )2(2 .     (8) 

It must be emphasized that in this treatment Wvol can be obtained as an analytical function 
containing the relative density ( relρ ), the quotient of the largest and the smallest cell-size 
(k), and syB ,1σ . Since the relρ , sy ,σ and k parameters of a given foam are known or can 
be measured, only one parameter remains to fit: 1B .  
 
3.2 Densification strain 
 

The essence of crack protection and protective packaging is to absorb as much 
energy as possible while keeping the protected object below the force limit, which would 
cause damages or injuries. Since after reaching the densification strain, Dε  the stress 
rises steeply, the absorbed energy can be calculated practically by integrating the stress in 
the plateau regime from zero to Dε . Thus, it is important to determine the densification 
strain for the energy absorption applications. 

The first estimation for the densification strain was given by Gibson and Ashby 
[1]. They have found that the densification strain is a linear function of the relative 
density both for closed- and open-cell foams: 

relD ρε 4.11−= ,        (9) 
A coefficient of correction is proportional to the cube of the relative density was 
introduced later by Ashby in [2] in order to improve the quality of the fitting: 

( )34.04.11)19.0( relrelD ρρε +−÷=       (10) 
Chan and Xie suggested an analytical model for the densification strain [6]. They define 
it as the intersection of the slopes of the stress-strain curves in the plateau and the 
densification regime. According to their calculations the expression for the densification 
strain of closed-cell foams is similar to Eq. 9: 

relcD ραε −=1 .        (11) 
The αc factor indicates that the foam cannot be totally compressed, in practice, a certain 
amount of pores remains in the crushed material.  
Eq. 11 changes to Eq 12 in the case of open-cell foams: 
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where αo is a constant, depending on the foam structure and the cell-edge material. 
The difference between Eq. 11 and Eq. 12 indicates that the amount of the pores in the 
crushed foam depends also on the cell-structure, and this modifies the expression for the 
densification strain. The compression tests performed by Chan and Xie show, that αc is 
approximately 1.4 (αc≈1.4-1.7), so Eq. 9 describes well the densification strain of closed-
cell foams. In the case of open-cell foams Eq. 9 and 10 were found to give good results 
only when the fitting regime is not too wide ( %10<∆ relρ ). When the fitting regime is 
greater than approximately 20%, Eq. 12 seems to give a better fit.  
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4. DISCUSSION 
 

The calculations in 3.1 can be modified to closed-cell foams of low relative 
density. Also the cell-size distribution of the foam can be taken into account in the 
calculation of )(lε  (Eq. 2) and the average relative density (Eq. 4). The cell-size 
distribution can be determined from 2D slices or 3D tomographic images [4]. Using the 
measured cell-size distribution (determined from the 2D slices) the energy absorption 
capacity can be determined with three fitting parameters: syBB ,11 σ=′ , syBB ,22 σ=′  and tw. 
Choosing tw≈100µm for Ap0.8 and Ap1.1, and tw≈150µm for Ap2.08 [8] only 1B′  and 2B′  
must be fitted. 

The fitted curves and the energy absorption capacity according to the Gibson-
Ashby model are shown in Fig. 2. Since the plateau stress in the Gibson-Ashby model is 
constant, Wvol is a linear function of strain. As Fig. 2 shows the Gibson-Ashby model 
describes the energy absorption properties quite well for low relative density foams. As 
the relative density increases the Gibson-Ashby model gives good values only for smaller 
and smaller strains while the calculations, which take the cell-size distribution into 
account, give good estimations even up to high strain. The difference between the two 
models is marked mostly in the case of the highest density foam, Ap2.08.  
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Fig. 2 The energy absorption capacity as a function of strain. The symbols belong to the 
measured curves, the red continuous lines are the linear fits according to the Gibson-
Ashby model and the black continuous lines are the calculated curves using the measured 
cell-size distribution. 
 
5. CONCLUSION 
 
One of the main features of the model taking into account also the cell-size distribution is 
that it gives better description for the energy absorption capacity compared to the 
inevitably more simple Gibson-Ashby model. The two models give similar results for 
low relative density foams, however for the investigated higher density foams the 
difference gets larger.  
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The description presented here has another advantage: in the case of uniform cell-size 
distribution the expressions for the plateau stress and the energy absorption capacity 
remain analytical (in the physically relevant regime). Therefore for this case an exact 
analytical description can be given for the shape of the energy absorption function. The 
analytical description allows also for analyzing the influence of different structural and 
materials features of the foam. 
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